Spanning eulerian subgraphs in N -locally connected claw-free graphs
نویسندگان
چکیده
A graph G is Nm-locally connected if for every vertex v in G, the vertices not equal to v and with distance at most m to v induce a connected subgraph in G. We show that both connected N2-locally connected claw-free graph and 3-edge-connected N3-locally connected claw-free graph have connected even [2, 4]-factors, which settle a conjecture by Li in [6].
منابع مشابه
Spanning eulerian subgraphs in N2-locally connected claw-free graphs
A graph G is Nm-locally connected if for every vertex v in G, the vertices not equal to v and with distance at most m to v induce a connected subgraph in G. We show that both connectedN2-locally connected claw-free graph and 3-edge-connected N3-locally connected claw-free graph have connected even [2, 4]-factors, which settle a conjecture by Li in [6].
متن کاملPairs of forbidden subgraphs and 2-connected supereulerian graphs
Let G be a 2-connected claw-free graph. We show that • if G is N1,1,4-free or N1,2,2-free or Z5-free or P8-free, respectively, then G has a spanning eulerian subgraph (i.e. a spanning connected even subgraph) or its closure is the line graph of a graph in a family of well-defined graphs, • if the minimum degree δ(G) ≥ 3 and G is N2,2,5-free or Z9-free, respectively, then G has a spanning euleri...
متن کاملCircumference of 3-connected claw-free graphs and large Eulerian subgraphs of 3-edge-connected graphs
The circumference of a graph is the length of its longest cycles. Results of Jackson, and Jackson and Wormald, imply that the circumference of a 3-connected cubic n-vertex graph is Ω(n), and the circumference of a 3-connected claw-free graph is Ω(n). We generalise and improve the first result by showing that every 3-edge-connected graph with m edges has an Eulerian subgraph with Ω(m) edges. We ...
متن کاملVertex 3-colorability of Claw-free Graphs
The 3-colorability problem is NP-complete in the class of clawfree graphs and it remains hard in many of its subclasses obtained by forbidding additional subgraphs. (Line graphs and claw-free graphs of vertex degree at most four provide two examples.) In this paper we study the computational complexity of the 3-colorability problem in subclasses of claw-free graphs defined by finitely many forb...
متن کاملRecent research in Graph Theory
A well-known and fundamental property of graphs is Hamiltonicity. A connected graph is Hamiltonian if it contains a spanning cycle. Determining if a graph is Hamiltonian is known as a NP-complete problem and no satisfactory characterization exists. Nevertheless, many sufficient conditions for Hamiltonicity were found, usually expressed in terms of degree, connectivity, density, toughness, indep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005